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Higher Order Multi-Grid Methods* 

By Steve Schaffer 

Abstract. This paper is concerned with the treatment of higher order multi-grid techniques for 
obtaining accurate finite difference approximations to partial differential equations. The three 
basic techniques considered are a multi-grid process involving smoothing via higher order 
difference approximations, iterated defect corrections with multi-grid used as an inner loop 
equation solver, and tau-extrapolation. Efficient versions of each of these three basic schemes 
are developed and analyzed by local mode analysis and numerical experiments. The numerical 
tests focus on fourth and sixth order discretizations of Poisson's equations and demonstrate 
that the three methods performed similarly yet substantially better than the usual multi-grid 
method, even when the right-hand side lacked sufficient smoothness. 

Introduction. The goal of the numerical solution of partial differential equations is 
to obtain the highest accuracy possible within the constraints imposed by limitations 
in computer time and storage. Using higher order discretizations of the differential 
equation provides a means of obtaining this accuracy without requiring large 
amounts of storage. Higher order approximations, however, are more expensive to 
obtain due to the added complexity of the resulting discretized equations. Recent 
advances in fast solution techniques have made it more feasible to attempt these 
super accurate approximations. The Multi-Grid method is one such fast solver which 
is easily adapted to accommodate higher order processes. This paper treats three 
higher order multi-grid methods applied to finite difference discretizations of a 
linear partial differential equation. 

This paper is primarily concerned with comparing the numerical performance of 
the three higher order multi-grid solution processes. The model problem used for the 
experiments is given by 

(1) LU = F in the interior of 02, 
U = G on the boundary of 2 (a 2), 

where L is the Laplace operator, 2 is the unit square in R2, F is a continuous 
function defined on the interior of Q and G is a continuous function defined on au. 
Several discretizations of (1), using second, fourth and sixth order differences, are 
considered. A number of algorithms based on these higher order multi-grid methods 
are tested in numerical experiments for their efficiency of solution (i.e., the work 
required to obtain a given accuracy). The algorithms are defined by various choices 
of discretizations and multi-grid processes, grid transfers, types of relaxation, etc. 
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The results of these experiments are used for comparison of the three higher order 
methods as well as the discretizations. 

Other work involving higher order multi-grid schemes has focused on some 
combination of multi-grid and defect correction. (See Chapter 2, Section 1 for 
comments regarding the methods treated by Brandt [5] and Hackbusch [8].) Auzinger 
and Stetter [1] have treated several implementations of the defect correction iteration 
and the multi-grid solution process. 

The current paper is an outgrowth of the work presented in the report [10] and is 
contained in the author's thesis [11]. 

In Chapter 1, the discretizations of (1) that are used in the experiments are 
described. The definitions of the vanrous multi-grid processes are then given, 
followed by a description of the second order multi-grid algorithm. Finally, the full 
multi-grid solution process, generalized to incorporate higher orders, is discussed. 
The three higher order multi-grid methods are described in Chapter 2. The first 
section of Chapter 3 deals with estimating the convergence rates of the higher order 
multi-grid algorithms through a local mode analysis; the next section presents the 
numerical results of the experiments; and the last section summarizes the results of 
the numerical experiments. 

The graphs that are discussed in the text are available in a supplement at the end 
of this issue. 

CHAPTER 1. DISCRETIZATIONS AND MULTI - GRID PROCESSES 

This chapter is concerned with describing the finite difference discretizations and 
the various multi-grid processes used in the higher order methods described in 
Chapter 2. 

1.1. The Finite Difference Discretizations. For each h e {2-K: K - 1,2,...',6), a 
uniform grid, Q2, is defined on the unit square with mesh spacing h. Finite 
difference equations approxirmating (1) will be denoted by: 

(1.1.1) L Uh = Fh on the interior of gh, 

(1.1.2)3 U = G on the boundary of a2(aW2 ), 

where Lh is one of the finite difference operators described below, Gh is the 
pointwise restriction of G onto afh and Fh is a grid function representing the 
function F. It is convenient to partition gh as follows: 

h 

. % --^ a A - % .. 
A 

where the sets A and B consist of points whose distance is h and 2h from au2h, 
respectively, and C consists of all remaining interior points. 
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The purpose here is to study high order multi-grid methods for solving (1). There 
are many possible versions for these methods due in part to the range of choices for 
discretizations (1.1.1)-(1.1.2), relaxation processes and grid transfer operators. In 
this section the particular finite difference operators and discretizations of (1) 
considered in this paper will be described. In what follows, Fh will represent the 
pointwise restriction of F onto 2'. 

Lh: This operator is defined by the usual five point star differencing scheme 

1 1)h 
h21-1 1h 

at each interior point of Uh. Two corresponding discretizations are considered for 
this operator and are given by 

(1.1.3) LhUh(x, y) = Fh(X, y), 

(1.1.4) LhUh(X, y) = Ih/2F/(x, F - ( 2 )Fh/2 

where Fh/2(X, y) is the pointwise restriction of F(x, y) onto Uh/2, and Ihh/29 

representing here the "full weighting operator", restricts functions on uh/2 onto uh 

by averaging as indicated. 
LhM: This is the Mehrstellen Verfahren difference operator (see Collatz [6]) given 

by the difference stencil 

1 1l 4 1 
4 -20 4 

6h2(1 4 1 h 

This operator is used in conjunction with the following weightings of F to produce, 
respectively, the fourth and sixth order difference approximations, 

(1.1.5) LMUh(X, Y)= Q2( 1 8 1 F h(x y) 

and 
1 4 1 

48 48 
(1.1.6) LUh(X, y) = 460 4 148 4 F&h2. 

48 48 
1 4 1 h/2 

Lh: This operator is derived by approximating the two differential operators, 
a2/ax2 and a2/ay2, separately by fourth order finite differences, in their respective 
directions. In regions B and C, the differencing in both directions is given by 

(1.1.7) 12 (-1 16 -30 16 -1 

where "*" is used to indicate the central coefficient. In region A, (1.1.7) is used 

whenever possible and, in directions where it is not, the fourth order difference 

(1.1.8) 1 (10 -15 -4 14 -6 1) 

is used. 
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Lh2: This difference operator agrees with Lh except that the difference, (1.1.8), is 
replaced by the second order difference 

(1.1.9) 1 (1 -2 1) 

LhM: This difference operator agrees with L except that, in region A, the fourth 
order Mehrstellen Verfahren difference equation, (1.1.5), is enforced. 

L : Again, the differential operators, a2/ax2 and a2/ay2, are differenced sep- 
arately. In region C, the sixth order differencing scheme 

(1.1.10) 1 (2 -27 270 -490 270 -27 2) 

is used for both directions. In regions A and B, the sixth order differences 

(1.1.11) 10h2(-l 214 -378 130 85 -54 16 -2) 

and 

(1.1.12) 1 82(6 -70 -486 855 -670 324 -90 11) 

are used in directions where the central point has, respectively, only one or two 
neighboring points in h. At all other points of regions A and B, (1.1.10) is used. 

L6^4: This operator agrees with L h in regions B and C. In region A, (1.1.12) is 
replaced by the fourth order difference (1.1.8). 

L6h,M: This operator agrees with L6 in region C. In regions A and B, the sixth 
order Mehrstellen Verfahren difference equation (1.1.6) is enforced. 

The discretization equations for the operators L4, Lh2, LhM Lh, Lh4, and LhM 

each use the pointwise restriction of F onto ih with the exception of the points 
where the Mehrstellen Verfahren is used in operators L4 M and L6 hM. The boundary 
conditions will henceforth be incorporated with the interior equations so that (1.1.1) 
and (1.1.2) are now written as 

(1.1.13) LhUh = Fh on gh 

It is understood that this equation holds at points interior to ah* 

1.2. Relaxation, Restriction and Interpolation Operators. Two relaxation processes 
are considered here for solving equations of the form (1.1.13) (the subgrids Qhven and 

2Odd are defined by e2ven- {(x, y) E 2h (X + y)/h -0 (mod 2)) and i2d = d - 

teven) 

LEX: This refers to the usual Gauss-Seidel relaxation method,where the points 
in oh are processed lexicographically. 

CHJ: This refers to Gauss-Seidel/Checkerboard relaxation with even-odd 
"Jacobi-like" processing of the points. New values are determined for the approxi- 
mation to Uh on ohen the approximation being displaced by these new values at the 
completion of the sweep. A similar sweep over o2odd is then made beginning with the 
updated approximation. 
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The restriction operator, denoted by Ih" maps a function defined on Oh to some 
representation of this function on 02h. The three restriction operators used here are: 

injection - (1)h 

injection by 1/2 - 2(1)h 2 

11 2 1 
full weighting - 4 2 

The prolongation operator, denoted by I2hh, interpolates a function defined on 22h to 
Sh where point evaluation is used at coextensive points. The prolongations consid- 
ered here are defined by bilinear, cubic and quintic interpolation. 

The identity operator on each grid is denoted simply by I, where it will be clear 
from the context on which grid it is to operate. Likewise, U will denote the solution 
of (1) and also its restrictions onto each grid. 

1.3. The Method MG2(nl, n2). The Correction Cycle Multi-Grid scheme is 
described briefly as follows (cf., Brandt [3] for more details). Let (1.1.13) represent 
the second order discretization, (1.1.3), on some grid S2h, and suppose the choices are 
made for restriction, prolongation and relaxation from those described in Section 
1.2. To avoid cumbersome notation, the current approximation to the solution, Uh, 

of (1.1.13) will be denoted by the lower case uh at each step of the process and the 
symbol "*- " will be used throughout to indicate replacement. The correction cycle 
multi-grid scheme, denoted by MG2(nl, n2), will first be described for two grids in 
the following four steps where the initial guess is given: 

1. Perform n1 relaxation sweeps on Eq. (1.1.13) (uh <- resulting approximation). 
2. On 22h, solve the "coarse grid correction" equation 

(1.3.1) L2hV2h = Ih2h(Fh - Lhuh). 

3. Correct uh by 

(1.3.2) u uh + I2hV. 

4. Perform n2 relaxation sweeps on (1.1.13) (uh + resulting approximation). 
The correction cycle, as described, consists of two main parts, namely, smoothing 

(steps 1 and 4) and coarse grid correction (steps 2 and 3). The latter involves the 
approximation of the fine grid residual equation 

(1.3.3) LhVh = Fh - Lhuh 

by the coarse grid correction equation (1.3.1) on 22h so that the correction, V2h, 
used in (1.3.2) acts as a coarse grid approximation to the fine grid error, Vh = Uh - 
u h. This approximation is meaningful only when Vh is smooth enough, that is, when 
the high frequency components in Vh, which have no representation on S2h, have 
been sufficiently reduced. The smoothing part of the correction cycle attempts to 
accomplish this by relaxation, which quickly damps the high frequency information 
in Vh. 

On more than two grids, MG2(n1, n 2), is defined recursively as follows. Since the 
coarse grid correction equation, (1.3.2), is of the same form as the original equation, 
(1.1.13), on Sh, it is natural to attempt to solve it by a similar application of steps 1 
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through 4. This would involve performing n1 relaxations on a 2h followed by a 
correction from the next coarser grid, Q4h, on which the coarse grid correction 
equation is again of the same form as (1.1.13). It follows that this process can be 
continued recursively by applying in turn the correction cycle multi-grid scheme to 
the coarse grid correction equations defined on successively coarser grids. The 
process continues until a sufficiently coarse grid is reached, at which point the 
problem on this grid would be solved exactly. The approximate corrections are then 
passed back to successively finer grids via step 3 where n2 relaxation sweeps are 
performed on the existing equation on each grid. When correction and relaxation 
have occurred on the finest grid, the correction cycle is complete. 

The cycling structure for MG2(nl, n2) is determined by the number, -y, of 
applications of steps 1 through 4 on each coarse grid before passing the approximate 
correction back to the next finer grid. The cycling structures considered here 
correspond to -y = 1 (the so-called V-cycle) and -y = 2 (the so-called W-cycle). These 
are depicted for h = 1/16 by 

y=l y=2 

h = 1l 16 
n +n 

1 
1 Q Q Q Q1 

4 
1~~~~~~~~~~~~~~~~ 

where the symbols \, 7, ? and * denote, respectively, forming the coarse grid 
correction equation, performing the coarse-to-fine correction (step 3), performing n 
relaxation sweeps and solving the grid equation exactly. 

For completeness, the iteration matrix for the second MG2(nl, n2) is derived. An 
analysis of MG2(nl, n2) is found in [9] and [13]. The relaxation method used in 
steps 1 and 4 will now be represented in terms of a matrix Rh and vector fh by 

(1.3.4) uh Rhuh + jh 

Since h is constructed in terms of F" so that Uh is a fixed point of (1.3.4), then the 
actual error Vh = Uh - Uh satisfies 

(1.3.5) Vh RhVh. 

From (1.3.1) and (1.3.3) it follows that 

(1.3.6) =L2h l2 

where (Li2h)-l is the inverse of Li2. Thus, step 3 yields 

(1.3.7) u u" + U (L2 hL2 

Subtracting both sides in (1.3.7) from Uh gives 

(1.3.8) V - V" -Ih(L2)hIL2V, 
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and, combining (1.3.5) and (1.3.8), it follows that the error after one cycle of 
MG2(nl, n2) on two levels is governed by 

(1.3.9) vh (Rh)n2(I - Ih (L2J ) L 2)(R) V M2 Vh 

where M2h is called the two level multi-grid iteration matrix. The multi-grid iteration 
matrix, Mh = MK can now be described recursively according to the number of 
levels, K, that are used (see Stuben [13] for details of a similar development) by 

(1.3.10) Mh = 

M2h+ (Rh (Mh 1) (L2 h L2( R ) K > 2, 

where -y is the cycling parameter described above. The residual LhVh satisfies 

(1.3.11) L~~~hVh hLMh(L2)1 hLvh, 

where the matrix LhMh(L hyl is called the iteration matrix for the residual. 

1.4. The Full Multi-Grid (FMG) Algorithm. The method MG2(nl, n2) and the 
three higher order multi-grid methods to be described in Chapter 2 are implemented 
here as FMG algorithms, introduced by Brandt [3]. The basic purpose of FMG is to 
efficiently produce a good initial approximation for some basic multi-grid iteration 
process on a given fine grid by using an approximate solution to the corresponding 
problem on the next coarser grid. The approximation on the coarser grid is obtained 
by a multi-grid process which again is initiated by an approximate solution from a 
still coarser grid and so on. This differs from that of the coarse grid correction step 
used in the multi-grid scheme basically in that the latter attempts to approximate the 
actual error of the fine grid approximation, whereas the fine grid solution itself is 
approximated in FMG. 

Set 
h4- h 

0 

p 1 

Uh* 0 

2h~~~~~~~~~~~~~~ , 

h*- 14 yes Transfer to new no h =h* yes EN LE|IL FMG level? 

LP 
= p* 

FIGURE 1 
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In addition to the mesh refinement process described above, the FMG algorithm 
used here incorporates the possibility of increasing the order of approximation. 
Specifically, let the increasing set of positive integers, { ap: p = 1, 2,. . . ,p*}, and the 
mesh size parameters, ho and h*, where h* = 2-Lho for some positive integer L, be 
given. Furthermore, for each up, let MGp denote a given apth order multi-grid 
method and let uh + MGP( uh) denote the result of applying MGp on grid h with 
initial approximation uh. The general FMG algorithm for obtaining a ap*th order 
approximation solution on grid h* is then given in Figure 1. 

CHAPTER 2. THE HIGHER ORDER METHODS 

This chapter describes three multi-grid methods for obtaining high order ap- 
proximations to (1). 

2.1. The Method MGH. This method consists of a smoothing step on the fine grid 
via the higher order difference equation and a coarse grid correction based on the 
higher order residual. Specifically, let one of the higher order finite difference 
discretizations described in Section 1.1 be denoted by 

(2.1.1) yhqjh = Fh, 

and let uh be an initial approximation obtained as described in the FMG algorithm. 
One iteration of the method MGH(nl, n2, n3, n4) is described in four steps as 
follows: 

1. Perform n1 relaxation sweeps on equation (2.1.1) (uh - resulting approxima- 
tion). 

2. Starting with an initial approximation V2h = 0 on grid 2h, apply the method 
MG2(n3, n4) to the MGH coarse grid correction equation 

(2.1.2) L2hV2h = Ih(Fh F huh) 

( +2 - the final approximation to J2h). (When the W-cycle is used, two iterations 

of MG2(n3, n4) are made on (2.1.2).) 
3. Correct uh by 

(2.1.3) uh u + I2hv 

4. Perform n2 relaxation sweeps on Eq. (2.1.1) (uh + resulting approximation). 
As in the conventional second order case, relaxation is performed in steps 1 and 4 

to smooth the error eh = 91h - Uh. The higher order relaxations used here have the 
advantage of dealing directly with this error. It is important to note that, in addition 
to the added expense of these higher order relaxations, the higher order difference 
operators usually produce poorer smoothing rates and are more likely to become 
unstable in relaxation. This is due to the more complicated stencils defining these 
difference operators. However, in the present experiments, it was found that, with 
the exception of L6 , the higher order difference operators considered for the model 
problem performed reasonably well in the MGH method. (See Chapter 3.) 

The replacement of the higher order relaxation in steps 1 and 4 in the above 
algorithm by second order relaxation results in a version of the multi-grid defect 
correction method (cf. [4] and [8]). This method, which uses relaxation on a lower 
order approximation to smooth the error of the higher order approximation, is 
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similar in structure to the method of i-extrapolation. (See Section 2.3.) The experi- 
mental performance of both methods on the Model Problem was found to be nearly 
equivalent, so this method is not treated here. 

The iteration matrix governing the error in the method MGH(nl, n2, n3, n4), 
which will be used in Section 3.1, is derived as follows. Let ? h be the iteration 
matrix for the relaxation in steps 1 and 4 so that the error after a relaxation sweep is 
given by 

(2.1.4) eh Jheh 

In step 2, the error V2h - V2h after y iterations of MG2(n3, n4) applied to (2.1.2) is 
related to the initial error, V2h (V2h is initially zero), by 
(2.1.5) V2h - v2h = (pm2h)YV2h, 

where M2h is the multi-grid iteration matrix (1.3.10) defined on grid 2h. From 
(2.1.1), (2.1.2) and (2.1.5) it follows that 

(2.1.6) v2h = (I 
- 

(m2h)Y)V2h = (I 
- 

(m2h)Y)(L2h)-1I2h heh 

Thus, the new approximation obtained in step 3 can be expressed according to 

(2.1.7) uh uh + i2h(I - (M2h)Y)(L2h)-lIIh2heh. 

Subtracting both sides of (2.1.7) from 0/h and using (2.1.4), it follows that 

(2.1.8) eh (h) 2( - I2h(I -(M2h)eY)(L2h 2h"e)(_qh)n,eh 

The matrix on the right side of (2.1.8) is the iteration matrix for the method 
MGH(nl, n2, n3, n4). This matrix will be used in Section 3.1 to analyze the local 
properties of this method. 

2.2. The Method MGD. This method is based on Iterated Defect Corrections 
(IDEC) where an "inner loop" multi-grid iteration process is implemented to 
approximately solve the discrete equations resulting from the "outer loop" IDEC 
iterations. Specifically, let the higher order approximation (2.1.1) be given and let uh 

be an initial approximation obtained as described in the higher order FMG 
algorithm. One iteration of the method MGD(nl, n2, n3) is described in three steps 
as follows: 

0. If the method is to start on a new FMG level, that is, if the initial approxima- 
tion uh is the result of interpolating the final approximation on the next coarser 
level, then perform n3 relaxation sweeps on the second order difference equation 
(uh resulting approximation). 

1. Starting with an initial approximation Vh = 0 apply MG2(nl, n2) to the higher 
order defect equation 

(2.2.1) LhVh = Fh _ yhuh 

(vh _ the final approximation to the correction, Vh). 
2. Correct uh by 

(2.2.2) uh Uh + Vh. 

The purpose of the second order relaxations in step 0 is to attempt to smooth the 
higher order error e h = Th - Uh which initially contains high frequency compo- 
nents, due in part to the FMG interpolation uh _I2 hu2. These high frequency 
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components in the error contaminate the defect Fh - .2,uh and can reduce the 
effectiveness of the higher order correction of steps 1 and 2. This was confirmed by 
experiments reported in Chapter 3. 

An important feature of the method MGD is that it involves only lower order 
relaxation on all grids. It differs from the coarse grid defect correction method 
mentioned in Section 2.1 in that the latter immediately passes the higher order defect 
to the coarse grid and the unperturbed second order equation is then used to 
approximately smooth the higher order error on the fine grid. In the method MGD, 
the second order relaxation on the fine grid does not deal directly with the actual 
higher order error but is designed to smooth the error of the approximation to the 
solution of the defect correction equation (2.2.1). This makes the fine grid smoothing 
step consistent with the coarse grid correction step. 

The iteration matrix for the method MGD, which will be used in Section 3.1, is 
derived as follows. In step 1, applying the method MG2(nl, n2) to Eq. (2.2.1) 
transforms the error _h = Vh - Vh according to 

(2.2.3) E Mh, 

where Mh is the multi-grid iteration matrix in (1.3.10). From (2.2.1) and the fact that 
the initial approximation is identically zero, it follows that the initial error is given in 
terms of the higher order error eh by 

(2.2.4) h = Vh - (Lh)l heh 

Combining (2.2.3) and (2.2.4) and rearranging terms, it follows that the final 
approximation in step 1 is given by 

(2.2.5) vh = Vh - MhVh = (I - Mh)(L h) lZehh 

Thus, correction (2.2.2) gives the new approximation 

(2.2.6) uh uh +(I - Mh)(Lh) lYheh 

and by subtracting both sides in (2.2.6) from qh it follows that 

(2.2.7) eh _(I -(I 
- Mh )(Lh)-lyh )eh. 

The matrix on the right-hand side of (2.2.7) is the iteration matrix governing the 
higher order error for MGD. 

2.3. The Method of T-Extrapolation. T-extrapolation is based on the assumption 
that for h small enough the truncation error, Tih, of the second order discretization 
(1.1.3) can be expressed locally by 

(2.3.1) T-h= LhU - Fh = Ah2 + 0(h4), 

where the function A depends on the points (x, y) E 1, but is independent of h. 
Thus, the truncation errors Tih and Ti2h can be extrapolated to yield the fourth order 
approximation 

(2.3.2) i-,~~h 
4 

(i2h - Jhi-h) h i2h + 0(4). (2.3.2) Th -3(T I T ) T 0 (h ) 

The method of i-extrapolation uses an approximation to the extrapolation (2.3.2) as 
follows. Let uh be a second order approximation to U on grid h and define 

(2.3.3) rh = L uh - Fh 
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(2.3.4) r2h = L2hI2,huh - F2h 

and 

(2.3.5) r,2h = I(r2h - I2hrh). 

Then combining (2.3.1) through (2.3.5) it follows that 

2h -r2h =-4 2h2 - 2h h)(U -' =Uh (h4), 
(2.3.6) Th ( 

I/i hL2)U U) 
h 

where the 0(h4) term depends on fourth differences of the error eh= U- uh. 

Equations (2.3.2) and (2.3.6) imply that the equation 

(2.3.7) L2hU2h = F2h + r2h 

will produce a fourth order approximation to U on grid 2h. Setting uh = U", the 
exact solution of the second order equation, and solving the equation (2.3.7) then 
yields the solution 

(2.3.8) (-2h = (L2h)1(F2h +4 2(L2hI2hUh - F2h) 2.3.8 u 2 )_ F L2 - F 

= U2" + 4?(I2hUh - U2h). 

This is equivalent to applying fourth order Richardson's extrapolation from grid h to 
grid 2h, although T-extrapolation is more general since the expression (2.3.1) can 
hold even when Uh itself does not have a similar expansion in h. 

Also considered here is a sixth order T-extrapolation onto grid 4h which assumes 
that the truncation error can be locally expanded in the form 

(2.3.9) Th = LU-Fh = Ah2 + Bh4 + 0(h6), 

where the functions A and B are independent of h. Using the extrapolated values Th 

and T24hh, where T24hh is obtained from the extrapolation of T2^ and T4", a second 
extrapolation yields 

(2.3.10) r4h 11 4h + 16 4h 2h = 4h + O(h 6). 

Let uh and u2" be fourth order approximations to U on grid h and grid 2h, 
respectively, and define 

(2.3.11) r = L4"I!/h'u2" - F4h 

(2.3.12) 4h 4 (r4h -I4hr2h) 

and 

(2.3.13) 4h = 
11 

4h + 16 4h h. 

Combining (2.3.10) through (2.3.13), it follows that 

(2.3.14) 4h - rh4h =14(L4hI24hh -i24hL2h)(U- u2h) 

+ 45 - I2Lhh)(U- U ) 

= 0(h6), 
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where the O(h6) term depends on a combination of fourth differences of the errors 
U - uh and U - u2h. Equations (2.3.10) and (2.3.14) now imply that the equation 

(2.3.15) L4hU4h = F4h + rh 

will produce a sixth order approximation to U on grid 4h. 
The full weighting restriction operator is an 0(h2) perturbation of the injection 

operator given explicitly by 

2.3.16 
6 

2 4 2 1 Mh + 16 -h 2 _12 2 j h2, 

where the bracketed term is a second order difference approximation to the 
Laplacian operator. It follows from (2.3.16) that the truncation error of the second 
order discretization (1.3.4) will have an expansion of the same form as (2.3.1) or 
(2.3.9). The -extrapolation applied to the discretization (1.3.4) will be referred to as 
weighted i-extrapolation. Expression (2.3.16) can also be used to show that the 
extrapolations (2.3.2) and (2.3.10) and the order of approximation in (2.3.6) and 
(2.3.14) continue to hold when the full weighting restriction operator is used in these 
expressions. Thus, full weighting of the residuals will be considered in both the 
i-extrapolation and weighted -extrapolation methods. 

In the following descriptions of the -extrapolation methods, the initial fine grid 
approximation is assumed to have been obtained as described in the FMG algo- 
rithm. Equation (1.1.13) will represent the discretization (1.1.3) in the case of 
T-extrapolation or the discretization (1.1.4) in the case of weighted i-extrapola- 
tion. The method of (weighted) i-extrapolation to fourth order, denoted by 
(W)MGT4(nl, n2, n3, n4, n5), is described in four steps as follows. 

1. Perform n1 relaxation sweeps on Eq. (1.1.13) (Uh *- resulting approximation). 
2. Perform n3 relaxation sweeps on the fourth order extrapolation equation (2.3.7) 

formed on grid 2h with u2" = I*huh as the initial approximation. Here, Ih2" 
represents injection. Then use the resulting approximation to initialize the applica- 
tion of MG2(n4, n5) to (2.3.7) (uh +- the final approximation). 

3. Correct uh by 

(2.3.17) uh uh + h2h(u - I2h u) 

4. Perform n2 relaxation sweeps on Eq. (1.1.13) (uh *- resulting approximation). 
The correction (2.3.17) is made in order to preserve the high frequency informa- 

tion held in the approximation uh which could not be approximated on the coarse 
grid. This information would be lost if the approximation uh were simply replaced 
by the interpolation of the extrapolated function u2h . The correction (2.3.17) 
corresponds to the Full Approximation Scheme multi-grid algorithm (see [3]). The 
second order relaxation in step 4 is designed to reduce high frequency components in 
the error on grid h which would adversely effect a second extrapolation. Experiments 
support the use of this step, although the disparity between the two solution 
processes, higher order extrapolation and second order relaxation, makes an analysis 
of this method difficult (see [8]). The approximation obtained in step 3 will be 
considered as the final approximation of the fourth order -extrapolation method. 

(W)MGT6(nl, n2, n3, n4, n5, n6), the method of (weighted) i-extrapolation to 
sixth order, is described in six steps as follows: 
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1. Perform n1 relaxation sweeps on Eq. (1.1.13) (u" +- resulting approximation). 
2. Perform n3 relaxation sweeps on the fourth order extrapolation equation (2.3.7) 

formed on grid 2h with u2" = I,2"u" as the initial approximation. Here Ih h iS 

injection (u2h +- resulting approximation). 
3. Apply MG2(n5, n6) to the sixth order extrapolation equation (2.3.15) formed 

on grid 4h with u4h = I4 u2h as the initial approximation. Here I24 is injection 
(u4h - resulting approximation). 

4. Correct u2h by 

(2.3.18) u u2 + I2h(u4h I4hu2h) 

and perform n4 relaxation sweeps on the fourth order extrapolation equation formed 
in step 2 (u2h - resulting approximation). 

5. Correct uh by 

(2.3.19) u " U + 12h(u - I2h" ) 

6. Perform n2 relaxation sweeps on Eq. (1.1.13) (uh +- resulting approximation). 
The resulting approximation obtained in step 5 will be considered the final 

approximation of the sixth order T-extrapolation method. 

CHAPTER 3. MODE ANALYSIS AND NUMERICAL RESULTS 

Numerical experiments were run on three problems to test the relative efficiency 
of the four multi-grid methods considered here and the accuracy of the various 
discretizations described in Chapter 1. The convergence rate estimates obtained from 
the local mode analysis are compared with the rates observed in the numerical 
experiments. For each method, comparisons are made for various choices of restric- 
tion, interpolation, relaxation and cycle structure. 

3.1. Local Mode Analysis. In this section the convergence rate of the two-grid 
MG2, MGH and MGD methods is estimated through a local mode analysis (see [3]). 
These estimates will then be compared in the following sections to the global 
convergence rates that were observed in the experiments performed here. For 
completeness, the description of the local mode analysis of the method MG2 given 
by Stiiben [13] is briefly outlined below. The methods MGH and MGD will be 
incorporated into this discussion. 

The local convergence of a multi-grid cycle, that is, the behavior of the error in the 
interior of the domain, is analyzed by neglecting the boundaries of the domain and 
the boundary conditions of the original problem. The restriction, interpolation and 
finite difference operators are then viewed as acting on the infinite grids uh = { vh: 
v E Z2} and fi2h = {v2h: v Ee Z2}, where the extensions of these operators are 
denoted by h2h I2hh and Lh, respectively. The extensions of the multi-grid iteration 
matrices that were described in Chapters 1 and 2 are then analyzed on the complex 
spaces: 

(3.1.1) Eh = (ei I X/h < r) 

(3.1.2) E2h = (eie X/h: I1 < 'rr/2) 

where 0 = (01, 02) E R2 and 101 = max( 0fl, 1021). Specifically, these matrices are 
studied on four-dimensional subspaces, the so-called harmonic subspaces, given by 

(3.1.3) H(O) = e_fl e a,# = O 1 
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where 0 = (O1, 02), 101 < 7/2 and 

=a#= (01(a), 02(ft)) = (01 - a* sign(01) *, 0 2- 1 sign(02) * T) 

To each harmonic subspace, H(0), there is a uniquely determined Fourier mode in 
e2h given by eO2 = eOO | S2h. 

The Fourier modes in H(0) are mapped into the one-dimensional subspace 
(e 2h) c e2h under the restriction operator according to 

(3.1.4) 2heh = r e 2a 0,1. 

Thus, the restriction of Ih2h to H(0) can be represented by the 4 x 1 matrix 

(3.1.5) [re I](ro r1 r0 r1O)- 
The constants r a,/3 = 1,0, for the injection and full weighting operators are 
given by 

(1) h ra=1 

1 1 2 1- 1 
: = + (1 cos(01(G)) + cos(02(ft)) + cos(01(G))cos(02(f))) 

1 - 0(0@2 + 6022), CY + ,B> O, 1~~~1>0 
I (al2 + 022), a = f3 = 0. 

The above description shows that the full weighting operator is more effective in 
dampening the high frequency components which have no representation on 2 2h. It 
is important to note, however, that in practice, injection of the residuals involves the 
calculation of the residuals at only one quarter of the points whereas full weighting 
involves the calculation of the residuals at every point of the fine grid. 

The Fourier mode e 2h E e2h is mapped into the corresponding four-dimensional 
harmonic subspace H(0) c eth under the interpolation operators according to 

(3.1.6) [2 heOO = SooeOO + Sllell + SlOelO + SOleO*l 

Thus, I2hh restricted to the subspace ( e2h) can be represented in matrix form by 

Soo 

(3.1.7) [S]o S= 
l 

The constants in the matrix [so0] are of the form 

(3.1.8) SOO = (1 - S(0@))(i - S(02)), Sll = S(01)S(02), 

s10= (1 - S(S1))s(2), S1 = S(01)(i - S(02))9 

where, for each interpolation operator, S(0O), i = 1, 2, is given by 

Linear: S(0i) = 2(1 - cos(OJ))i 

Cubic: S(Oi) = (8 - 9 cos(0i) + cos(30,)), 

Quintic: S(Oi) = 256 (128 - 150 cos(O) + 25 cos(30i) - 3 cos(50J)). 
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For the extended finite difference operators, the Fourier modes are eigenfunc- 
tions: 
(3.1.9) Eheie X/h = X(6, h)ele X/hlh < 7r, 

(3.1.10) E2hei2ex/2h - X(20,2h)ei2x/2h, 10 /2. 

The matrix representations for the operators Ejh and E2h acting on the subspaces 
H(0) and ( e2), respectively, are given by 

00~~~~~~~~~~~ X(0009 h) 

X(011, h) O 
(3.1.11) [xA'@] = h) X(0 A h) X(01n, h) 

0X(601 h) 

and 

(3.1.12) [V2h] = [X(20,2h)]. 
The eigenvalues, X(0, h), for the four extended finite difference operators are given 
by 
E: X(0, h) = 2(cos(01) + cos(02) - 2)/h , 

E: X(0, h) = 6(-(cos(201) + cos(202)) + 16(cos(01) + cos(02)) - 30)/h2, 

h: X(0, h) = g(2(cos(3O1) + cos(302)) - 27(cos(201) + cos(202)) 

+270(cos(0l) + cos(62)) - 490)/h2, 

Eh: X(0, h) = 3(4(cos(01) + cos(02)) + 2cos(0I)cos(02) - 10)/h2. 

The relaxation procedures are formally extended to F2h. First, let kfh denote the 
amplification matrix corresponding to the extended LEX relaxation method using 
the difference operator L2h. Let the functions Vh and Vh E th satisfy 

(3.1.13) Vh = khVh 

At each point (x, y) e i2h, Vh and Vh are related as follows 

(3.1.14) Vh(x + h, y) + Vh(x y + h) + v((x - h, y) 

+ Vh(x, y - h) -4Vh(x,y) 0 

Setting Vh( X) = eiO X/h then relation (3.1.14) becomes 

(3.1.15) vh = (0)Vh 

where the complex number IA(O) is called the convergence factor corresponding to 
the frequency 0. It follows from (3.1.15) that the restriction of kfh to the subspace 
H(0) is represented by the 4 x 4 diagonal matrix 

(oo) 
0 

(3.1.16) [ih1 =011 

t((010 0 
I-t (001) 
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For the four extended finite difference operators, the convergence factor, ,i(O), of 
the LEX relaxation method is given by 

h~: JL(O) = ~eie1 - eiG2 
e' 0' + e-'6 - 4 

0^* (8) - -16(e'iG + ei'2) +(ei261 + ei262) 

-60 + 16(e-iGl + ei82) -(e-i26' + e-i282) 

Eh.: 27() = -270(eiG1 + ei'2) + 27(ei261 + ei262) -2(e 0 + ei302) 

-980 + 270(e1'Ol + ei02) - 27(e i261 + e-i262) + 2(e-i361 + e`362) 

-h ( 4(e0i1 + e'02) - e'(1 +o2) 
- 

-2) 

-20 + 4(e-'6l + e`72) + e -(61+02) + e-i(61-02) 

The smoothing rate, ,L, of the relaxation process is defined as 

(3.1.17) = sup 1I(O)I. 
ir/2 jO1 <6 

Thus, ,A is a measure of the rate at which the high frequency components are reduced 
by the relaxation method. (-(log tt)-1 relaxation sweeps are needed to reduce all the 
high frequency components by an order of magnitude.) The following smoothing 
rates were computed for the LEX relaxation using the four extended finite difference 
operators 

Lh2: .5=. 

Lh : ,U = .534, 

L6h ,U= .553, 

L4: = .464. 

A complete relaxation sweep of the extended even/odd CHJ relaxation method, 
starting with an initial function Vh E eh, can be written as 

(3.1.18) Vh =kehvenVh, 

(3.1.19) 
A 

h =kRh dfh 

where Aveven and Rod are the amplification matrices corresponding to the partial 
Jacobi-like relaxation sweeps over the subsets hen and Ohd' respectively. Here, 

even is defined to be the set {(x, y) E Qh: (x, y)/h 0 (mod 2)) and Eldd = 
h 

even. Using the operator LE2, the functions Vh and Vh in (3.1.18) are related by 

Vh(X + h, y) + Vh(x - h, y) + Vh(X, y + h) 

(3.1.20) + Vh(x, y - h) - 4*h(x, y) = 0, (x, Y) E Qehen 

fh(X, y) = Vh(x, y), (X, y) E 

Setting Vh(X) = eiGX/h, relation (3.1.20) becomes 

(3.1.21) jh((x y) = A()Vh(x 9 y), (x, y) E Pihd 
v (hf .) = Vsh(X .~ E_ even,a 
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where A(O) is the convergence factor corresponding to the Jacobi relaxation method. 
By a similar argument, it can be shown that the functions Vh and j1h in (3.1.19) are 
related by 

(3.1.22) Vj(x, y) 
- 1r(x y) (x, y) E event 

* h(X y) = h1(6O)Ph(X, y), (x, y) E oddh 

where ,u(O) is defined as in (3.1.21). Using the relations (3.1.21) and (3.1.22), Stiuben 
shows that the restriction of keven and Rhd to the subspace H(O) can be represented 
by the four by four matrices 

L oo +1 -(All - 1) 0 0 

(3.1 .23) [ 
h 

eIl-(& -) L1+00 ] AO1-3 'y@even] 2 | -(0lo 1) IAi uo + 1 (lso, - 1)| 

0 0 -(p10- 1) 01 + 1 

oo + 1 l1 - 1 0 0 

(3.1.24) [AhdI 0 21 1 ILio+ L 01 - 1 

00 Iiol tt loi + j 

where JIbaA = jIb(6. Thus the matrix [14] describing the effect of a complete 
even/odd Checkerboard relaxation sweep on the subspace H(O) is given by 

(3.1.25) [41h= [fih,odd l[f,evenl. 

Since the matrices (3.1.23) and (3.1.24) couple the high and low frequency compo- 
nents in H(O), a smoothing rate for the CHJ relaxation method analogous to that 
defined in (3.1.17) is not possible. For the four extended finite difference operators, 
the convergence factor Is(@) of the Jacobi relaxation method is given by 

LE: L(O) = 2(cos(Ol) + cos(02)), 

4: ul(O) = -0j(16(cos(Ol) + cos(02)) - cos(201) - cos(202)), 

Li: u(0) = (270(cos(Ol) + cos(02)) - 27(cos(201) + cos(202)) 

+2(cos(301) + cos(302))), 

EL: &() = +j(4(cos(01) + cos(02)) + 2cos(O1)cos(02)). 

It follows from the above arguments that the extended multi-grid iteration 
matrices corresponding to the methods MG2, MGH and MGD can be represented 
on each of the subspaces H(0), 101 < r/2, by the following 4 x 4 matrices 

(3.1.26) [MG20] = 
201 [r ] )[,]nl 

(3.1.27) [MGHoI = Aoe2(IseI[X 1A[reI[ 0])[A( 
and 

(3.1.28) [MGDo] = I -(I I-[MG2eI])[A*11[X'01. 
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The symbol " " indicates matrices defined by one of the extended higher order 
difference operators. The corresponding extended iteration matrices for the residual 
(see (13.11)) are represented on each subspace H(O), 1j1 < a/2, by the following 
4 x 4 matrices 

(3.1.29) [MG20 ]R = [ Ao ] [MG20 ][I Ao ], 

(3.1.30) [MGHO] R= [Xho][MGHO][X06]l 

(3.1.31) [MGDo] = [Xho][MGDo ] [Ao]l 

Since the performance of the multi-grid methods in the first few iterations is of 
interest here, the spectral norm of the extended iteration matrices Kfh will be used 
for comparison. The spectral norm of Mh is defined here by 

(3.1.32) 1Kfh112 = SUp { | I[ mO ] 112: 101 < 7/2}, 
where [mo] is the 4 x 4 matrix which represents the restriction of Mh to the 
subspace H(O). In the experiments reported here the discrete approximation to 
IMh 112 given by 

a(h*) = max{I1me; 12 0j = hr(i, j), i, j E Z, > I 7r/2 

is used. a(MH) will be referred to as the a-norm of the matrix Mh. 
The a-norm of the extended iteration matrices corresponding to the following 

three algorithms is presented in Table 1. 

A1-MG2; n1 = 2, n2 = 1, full weighting restriction, linear interpolation. 
A2-MGH; n1 = 3, n2 = 1, full weighting restriction, cubic interpolation. 
A3-MGD; n1 = 2, n2 = 1, full weighting restriction, cubic interpolation. 

The convergence rates were calculated for the case h = 1/32. These results will be 
compared to the actual convergence rates of the corresponding algorithms in the 
experiments in Section 3.2. 

The rates given in Table 1 are not the best possible since algorithms Al, A2 and 
A3 were designed only for the purpose of comparison. The rates for algorithm A2 
are better than those for algorithm Al due to the extra relaxation and the higher 
order interpolation used in A2. It was observed in the experiments that the 
performance of the MGH algorithms generally improved with the additional relaxa- 
tion and the use of cubic interpolation whereas the efficiency of the MG2 algorithm 
deteriorated with these additions. 

The extended iteration matrix for MGD is given by 

(3.1.33) I-(Lh)-l.wh + 2 

where ?ph denotes one of the operators [4h, LEh, or L*,, and Mh is the extended 
iteration matrix for MG2. The term I - (ED2)'Yh occurring in (3.1.33) corresponds 
to the outer loop IDEC iteration of MGD. The a-norm of I - (L2h )klh for 
/= L4h L6 and LM was calculated to be .33, .51 and .33, respectively. Comparing 
these results with the results for algorithm A3 in Table 1, it is clear that the 
convergence rate of MGD is essentially determined by the IDEC iteration. 
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TABLE 1 

Local mode analysis estimates 

Al gori thm Al A2 _ A3 

Operator Lh L L | L L Lh L 24 6 N -4 6 N 
Relaxation Type LEX CHJ LEX CHJ LEX CHJ LEX CHJ LEX CHJ LEX CHJ LEX CHJ 

a-Norm, Error .119 .080 .0627 .044 .070 .0481 .0452 .033 .38 .33 .57 .51 .33 .33 

a-Nonn, Residual .123 .080 .0632 .044 .076 .0476 .0454- .025 .38 .33 .57 .51 .3 .33 

3.2. Numerical Results. Three problems are presented in this section. They are 
discretized using the finite differences described in Section 1.1. For each problem, 
the discretization errors are presented and several algorithms based on the methods 
MG2, MGH, MGD and MGT are then described. The numerical performance of 
these algorithms, implemented on each of the three problems, is compared. Finally, 
the methods of Richardson extrapolation and T-extrapolation are compared in the 
multi-grid context. 

The three problems were determined by preselecting a solution to Eq. (1) and 
defining the right-hand side and boundary conditions accordingly. 

Problem 1. This problem is well suited for higher order approximations on the 
grids considered here. 

SOLUTION: U(x, y) = SIN(7nx)SIN(27ry). 
Problem 2. The solution to this problem has high oscillations relative to the mesh 

spacing of the grids considered here (on grid h = 1/32, the solution contains an 
average of 6 grid points per wavelength). 

SOLUTION: U(x, y) = SIN(17(x + y)). 
Problem 3. The solution to this problem has a jump discontinuity in the 6th 

derivatives along the parabola given by 

T(x,y) =y-X2 + X- .75 = 0. 
It is well suited for second and fourth order approximations, although the solution 
lacks the differentiability that, in theory, is needed for a sixth order approximation. 

SOLUTION: U(x, y) = EXP(C(x, y)T6(x, y)) where C(x, y) is defined by 

C(X' Y) = (; TXY 

In the experiments reported here, the discrete analog of the continuous Euclidean 
norm is used to measure the error, Eh -_ Uh" where U is the continuous solution 
projected onto gh and Uh is a given approximation to U. Thus, the error norm, 

h denoted by A .,is given by 

?h IIEhII' = r 
E (Eh(X y))2h21 

(X,y) e oh 

The norm 

sh= [(xh ((8(X y))2 + (Sh(x Y))2)h2 
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where 

Oh(X y) = (Eh(X + h, y) - Eh(x, y))/h 
and 

Oh(X y) = (E(x, y + h)- Eh(X, y))/h, 

will be used to test how well the derivatives of U are approximated by uh. The 
norms, ah and ah, are defined so that, for any two grids, the norm defined on one 
grid is compatible with the corresponding norm defined on the next. 

For Problems 1, 2, and 3, the converged solutions corresponding to each of the 
finite difference discretizations were obtained by performing several cycles of MG2, 
MGH or MGD on grid 1/32 and grid 1/64. In Graphs 1, 2, and 3 the negative log 
of the error norm, a h, measured at convergence on grid 1/32 and grid 1/64, is 
plotted for each discretization (solid lines). The negative log of the norm ah, 

measured at convergence on grid 1/32 and 1/64, is also plotted for each discretiza- 
tion (dotted lines). 

The discretizations are ordered in the graphs according to accuracy of solution, 
Mehrstellen Verfahren consistently giving the most accurate solution in both the 
fourth order and sixth order cases. The accuracy generally deteriorated when lower 
order differences were used near the boundaries as seen from L,2 and L64. The 
solutions obtained by L h and L4 hM were equally as accurate, whereas the solutions 
obtained by L M were appreciably more accurate than those for L . In the second 
order case, the weighting of the function F onto the grid (Eq. (1.3.4)) produced a 
more accurate discretization than the usual injection (Eq. (1.3.3)) for the three 
problems considered here. 

In the algorithms considered in the experiments, the error, Eh, of the approxima- 
tion is related to the amount of work, Wh, used to obtain it by the expression 
Eh = C(Wh)-r. The constants C and r > 0 depend on the method, the finite 
difference discretization and the multi-grid processes (interpolation, restriction and 
relaxation), but are independent of h. Here, the work was measured by a cumulative 
operation count which included interpolations and restrictions as well as relaxations. 
One multiplication was counted as two additions. Therefore, the graphs _log(a") 
versus log(Wh) and _log(8h) versus log(Wh) will be used to compare the four 
multi-grid methods as well as the effects of varying the interpolations, restrictions, 
etc., within each method. 

A preliminary set of experiments was run for each of the higher order methods 
using the various choices of interpolation, restriction, number of relaxations, discre- 
tizations, multi-grid cycling and FMG cycling. From these experiments, a set of 
multi-grid processes which produced the best general performance in all three higher 
order methods was selected for comparison purposes. Unless otherwise stated, each 
method uses the following: 

1. The W-cycle (see Section 1.3); 
2. Full weighting of the residuals; 
3. Cubic interpolation of the approximation to a new level (FMG); 
4. Linear interpolation in the coarse grid correction step for the method MG2; 

and 
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5. Cubic interpolation in the coarse grid correction step for the higher order 
methods. 

It was found that the performance of the fourth and sixth order Mehrstellen 
Verfahren discretizations in the methods MGH and MGD were nearly equivalent. 
Therefore, only the sixth order Mehrstellen Verfahren discretization was considered 
in these experiments. The following four FMG cycles were used: 

FMGa FMGb FMGc FMGd 
Order of Order of Order of Order of 

h Approx. Approx. Approx. Approx. 
1 2 2 2 2 4 

8 2 2 2 2 

1 
2 2 2 2 6 16 

- 2 2-*4 2-*6 2-6 32 
1 2 4--6 6 6. 

64 

The following nine algorithms using both LEX and CHJ relaxation were applied to 
Problems 1, 2, and 3. MG2(2, 1) was used in the second order steps of FMGb, 
FMGC and FMGd. 

Alg 1: MG2(2, 1); FMGa 
Alg 2: WMG2(2, 1); FMGa 
Alg 3: MGH(3, 1,2, 1); FMGb; (L 2, L h4) 

Alg 4: MGH(3, 1, 2, 1); FMGb; (L M, L M) 

Alg 5: MGH(3, 1,2, 1); FMGc; (L h-sixth order discretization) 
Alg 6: MGD(2,1,2); FMGb; (L4, Lh) 
Alg 7: MGD(2, 1,2); FMGc; (LM-sixth order discretization) 
Alg 8: MGT4(1, 0, 1,2, 1); 

MGT6(1,0,3,0,3,3); V-cycle, FMGb 
Alg 9: WMGT4(1, 0,1,2, 1); 

WMGT6(1, 0,3, 0, 3, 3); V-cycle, FMGb. 
All of the graphs, unless otherwise stated, start at the second order solution 

obtained on grid 1/32. The subsequent points on each graph represent measure- 
ments taken at the completion of each FMG step (i.e., just before refining the grid or 
increasing the order of approximation). In the first set of graphs, the MGH 
algorithms (i.e., Algorithms 3-5) and the second order Algorithm 1 are compared. In 
the graphs, LEX and CHJ relaxation will be denoted by the symbols L and C, 
respectively. 

Experiments were also run on the algorithms 
Alg 3a: MGH(3, 1,2, 1); FMGc; (Lh64) 

and 
Alg 4a: MGH(3, 1,2, 1); FMGc; (L6,M). 
The results of these experiments showed that both Alg 3a and Alg 4a were less 

efficient than the corresponding algorithms Alg 3 and Alg 4. 
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TABLE 2 

Residual reduction factors for MGH 

f Alg 3 Alg 4 r Alg 5 

LLhLh Lh Lh 
4,2 6,4 4,M L6,M M 

I~~~ . 

Problem_ LEX CHJ LEX CHJ LEX CHJ LEX CHJ LEX CHJ 
LMA 1/32 .063 .044 .076 .048 .063 .044 .077 .048 .045 .033 

1 1/32 .01 .077 j .016 .01 .007 .026 

1 1/64 .004 .005 .055 .011 .002 .001 .066 .028 .001 .002 

2 1/32 .042 .027 .045 .021 .038 .029 

2 1/64 .011 .009 .05 .072 .008 .003 .037 .012 .004 .002 

3 1/32 .046 .067 .062 .056 .03 .038 

3 1/64 .023 .026 .029 .071 .01 .006 .062 .016 .008 .003 

The rates in Table 2 generally stayed within the predicted values (LMA). The 
exceptions occurred in algorithms which used CHJ relaxation. 

Referring to Graphs 1, 2 and 3, it can be seen that the efficiency of the MGH 
algorithms in Graphs 4 through 9 is related to the accuracy of the discretizations 
used. In general, the algorithms with CHJ relaxation performed somewhat more 
efficiently than with LEX relaxation. The first derivatives of the solution were 
approximated in the MGH algorithms equally as well as the solution itself. In the 
experiments, the residual reduction factors were calculated. These and the corre- 
sponding residual reduction factors predicted by the Local Mode Analysis (LMA) 
are presented in Table 2. 

In Graphs 10-15, the MGD algorithms, Alg 6 and Alg 7, using both LEX and 
CHJ relaxation and Alg 1 with CHJ relaxation, are compared. 

The MGD algorithms using CHJ relaxation initially produced better results. 
However, in subsequent iterations the efficiency of these algorithms degenerated. 
This is seen particularly in the derivative graphs, Graphs 13-15. It was shown in 
Section 3.1 that the outer loop IDEC iteration dominates the rate of convergence of 
the MGD method. Thus, high frequency information in the error on the fine grid 
will tend to slow down the convergence of the MGD algorithms to that determined 
by IDEC. CHJ relaxation leaves highly oscillatory residuals which are reflected in 
the error as well. In Table 3, the residual reduction rates for the two MGD 
algorithms are presented. It is seen there that the rates for the algorithms using CHJ 
relaxation attain and sometimes surpass the predicted rates. 

In Graphs 16-21, the T-extrapolation algorithms, Alg 8 and Alg 9, using both 
LEX and CHJ relaxation and algorithms Alg 1 and Alg 2 with CHJ relaxation are 
compared. 
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TABLE 3 

Residual reduction factors for the MGD algorithms 

Alg 6 Alg 7 

Lh Lh Lh 
___ ~~4 6 __M__ 

Probl em Gri d LEX CHJ LEX CHJ LEX CHJ 

LMA 1/32 .38 .33 .57 .51 .33 .33 

1 1/32 .073 .028 .012 .013 

1 1/64 .24 .33 .34 .52 .071 .33 

2 1/32 .055 .046 .069 .039 

2 1/64 .23 .34 .31 .75 .067 .30 

3 1/32 .11 .075 .044 .044 

3 1/64 .25 .3 3v .28 | .82 .065 .23 

Algorithms Alg 2 and Alg 9, based on the more accurate weighted second order 
discretization (1.3.4), produced consistently better approximations than the corre- 
sponding algorithms, Alg 1 and Alg 8. Extrapolating to fourth order, the algorithms 
produced nearly the same results when either CHJ or LEX relaxation were used. In 
the sixth order case, a substantial improvement in the accuracy of the approximation 
is observed after the extrapolation in the algorithms using LEX relaxation. The 
graphs show that the extrapolation to sixth order in the algorithms using CHJ 
relaxation produce an approximation still of order four. This is reflected even more 
strongly in the derivative graphs. This behavior is similar to that observed in the 
MGD algorithms. 

In the next set of graphs, the previous algorithms based on the methods MGH, 
MGD and MGT are compared. Included in these graphs is the following, nearly 
optimal, second order algorithm: 

Alg la: MG2(1, 1); FMGa; injection (by ) of residuals; V-cycling; CHJ. 
In Graphs 22-27, the performance of the three higher order algorithms on the 

three problems is seen to be nearly equivalent. In terms of efficiency, the three 
higher order multi-grid algorithms, MGH, MGD and MGT are clearly superior to 
the second order multi-grid algorithm MG2. 

The standard algorithms, Alg 1 through Alg 9, were modified and experiments 
were run on Problem 1 to test the effects of alternate choices of residual transfer, 
interpolation, numbers of relaxation and/or FMG cycling. Results of the following 
MGH algorithms are plotted in Graphs 28-31. 

Alg Hi: Alg 4; LEX; injection of residuals, 
Alg H2: Alg 4; CHJ; injection (by 2) of residuals, 
Alg H3: Alg HI; quintic interpolation of high order approximation, 
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Alg H4: Alg 5; LEX; quintic interpolation of high order approximation, 
Alg H5: Alg 5; CHJ; quintic interpolation of high order approximation, 
Alg H6: Alg 5; CHJ; FMGd, 
Alg H7: Alg H6; quintic interpolation of high order approximation. 
In Graphs 28 and 29, the algorithms using injection of the residuals are seen to be 

less efficient than Alg 4; LEX, especially Alg H2 where CHJ relaxation was used. 
The accuracy improved considerably when quintic interpolation of the approxima- 
tion was introduced (Alg H3). The marked increase in accuracy obtained by 
introducing quintic interpolation is seen again in Graphs 30 and 31 (compare Alg 5; 
CHJ to Alg H5 and Alg H6 to Alg H7). Comparing Alg H6 to Alg 5; CHJ and Alg 
H7 to Alg H5, it is seen that no appreciable gain in efficiency is obtained by 
introducing higher orders earlier in the FMG algorithm. 

The first two MGD algorithms below are designed to test the effect of the second 
order smoothing step used on grid 1/64 prior to forming the higher order defect. 
The next four algorithms investigate the performance of MGD when less expensive 
multi-grid procedures are used. 

Alg Di: Alg 6; MGD(2, 1, 1); LEX, 
Alg D2: Alg 6; MGD(2, 1,3); LEX, 
Alg D3: Alg 6; MGD(1, 1, 2); LEX, 
Alg D4: Alg D3; injection of residuals, 
Alg D5: Alg D4; V-cycle, 
Alg D6: Alg D5; linear interpolation of corrections. 
In Graphs 32 and 33, it is seen that the second order smoothing step strongly 

influences the subsequent higher order MGD iterations. The less expensive algo- 
rithms presented in Graphs 34 and 35 were correspondingly less efficient with the 
exception of algorithm Alg D3. The nearly equivalent performance of Alg 7; LEX 
and Alg D3 suggests that, similar to the results seen on Graphs 32 and 33, the most 
critical smoothing step on the fine grid in the MGD algorithm occurs just before 
forming a new defect. 

The following MGT algorithms were designed to investigate the effects of quintic 
interpolation and the use of injection of residuals on the extrapolation. 

Alg Ti: Alg 9; LEX; quintic interpolation of higher order approximations, 
Alg T2: Alg T1; injection of residuals, 
Alg T3: Alg 9; LEX; injection of residuals. 
A significant gain in accuracy is seen for the extrapolations made when quintic 

interpolation was used. The algorithms using injection of residuals performed less 
efficiently. This is due not only to the slower convergence observed for algorithms 
using injection of residuals, but also to the fact that high frequencies in the fine grid 
residual, which would adversely affect the extrapolation on the coarse grid, are 
directly injected onto the coarse grid. 

The Richardson extrapolation to fourth and sixth orders from grid h = 1/64 to 
grids h = 1/32 and h = 1/16, respectively, is compared with the corresponding 

T-extrapolations in Alg 8; LEX. Richardson extrapolation was performed on the 
second order solution obtained by the following three MG2 algorithms. 

Alg Ri: FMGa; CHJ; MG2(2, 1), 
Alg R2: FMGa; CHJ; MG2(2, 1) applied twice on each grid, 
Alg R3: FMGa; CHJ; MG2(2, 1) applied three times on each grid. 
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In Table 4, the results of these algorithms is presented. For comparison the a-norm 
of the fourth and sixth order extrapolated solutions obtained by Alg 8; LEX on grid 
1/32 and grid 1/16, respectively, are presented along with the work counts corre- 
sponding to these points in the algorithm. 

The equivalence of the two extrapolation methods is apparent from the results in 
Table 4. The accuracy of the Richardson's extrapolation approached that of the 
T-extrapolation as the accuracy of the second order approximations used in the 
Richardson extrapolation increased. The a-norm of the second order residuals on 
grid 1/16, grid 1/32, and grid 1/64 resulting in the three Richardson's extrapola- 
tion algorithms are presented in Table 5. The work counts for the Richardson's 
extrapolations are somewhat high as the second order algorithms used were not 
optimal. 

TABLE 4 
Richardson's extrapolation versus T-extrapolation 

a-norms of the error after extrapolation 

Order Grid Alg Rl Alg R2 Alg R3 Alg 9;L 

4 1/32 .12(-4) .64(-6) .52(-6) .93(-6) 

78 ops 136 ops 194 ops 87 ops 

6 1/16 .47(-5) .22(-6) .13(-7) .24(-7) 

78 ops 136 ops 194 ops 119 ops 

TABLE 5 
a-norm of the second order residuals 

in the Richardson 's extrapolation algorithms 

Grid Alg R1 Alg R2 Alg R3 

1/16 .25(-2) .94(-4) .40(-5) 

1/32 .11(-3) .30(-5) .16(-6) 

1/64 .39(-5) .13(-6) .73(-8) 

3.3. Conclusions. To summarize some of the basic implications of the previous 
study, note first that all three higher order multi-grid methods produced very 
accurate approximations with about the same efficiency. The performance of the 
algorithms based on these higher order methods depended on the particular choices 
of multi-grid processes used, although each was consistently more efficient than the 
conventional second order algorithms. The use of full weighting restriction, higher 
order interpolation of corrections and W-cycing produced more efficient higher 
order algorithms. 

The convergence rates observed in the experiments generally stayed within the 
optimal rates predicted by the local mode analysis. The notable exception to this was 
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the MGD algorithms using Checkerboard relaxation. This relaxation introduces high 
frequency information into the error on the fine grid, which, in turn, contaminates 
the higher order approximation in the Defect Correction equation used in MGD. 
The sixth order T-extrapolation algorithms using Checkerboard relaxation produced 
similar results to that of MGD. 

The Mehrstellen Verfahren discretizations were the most accurate of the discreti- 
zations considered here. The algorithms using the Mehrstellen Verfahren discretiza- 
tion were consistently more efficient than the corresponding algorithms using other 
alternatives. 

APPENDIX 

List of algorithms used in the experiments 

Alg 1: MG2(2, 1); FMGa 
Alg la: MG2(l, 1); FMGa; injection (by 2) of residuals; V-cycle; CHJ 
Alg 2: WMG2(2, 1); FMGa 

Alg 3: MGH(3, 1, 2, 1); FMGb; (L42, L6,4) 
Alg 3a: MGH(3, 1,2, 1); FMGc; (Lh64) 
Alg 4: MGH(3, 1, 2,1); FMGb; (Lh,M, L6,M) 
Alg 4a: MGH(3, 1, 2,1); FMGc; (L6 M) 

Alg 5: MGH(3, 1,2, 1); FMGc; L h-sixth order discretization) 
Alg HI: Alg 4; LEX; injection of residuals 
Alg H2: Alg 4; CHJ; injection (by 2) of residuals 
Alg H3: Alg Hi; quintic interpolation of high order approximation 
Alg H4: Alg 5; LEX; quintic interpolation of high order approximation 
Alg H5: Alg 5; CHJ; quintic interpolation of high order approximation 
Alg H6: Alg 5; CHJ; FMGd 
Alg H7: Alg H6; quintic interpolation of high order approximation 

Alg 6: MGD(2, 1,2); FMGb; (L , Lh) 
Alg 7: MGD(2, 1,2); FMGc; (LM-sixth order discretization) 
Alg DI: Alg 6; MGD(2, 1,2); LEX 
Alg D2: Alg 6; MGD(2, 1,3); LEX 
Alg D3: Alg 6; MGD(l, 1, 2); LEX 
Alg D4: Alg D3; injection of residuals 
Alg D5: Alg D4; V-cycle 
Alg D6: Alg D5; linear interpolation of corrections 

Alg 8: MGT4(1, 0, 1,2, 1); 
MGT6(1, 0, 3,0, 3); V-cycle; FMGb 

Alg 9: WMGT4(1, 0,1, 3, 1); 
WMGT6(1, 0,3,0, 3); V-cycle; FMGb 

Alg Ti: Alg 9; LEX; quintic interpolation of high order approximation 
Alg T2: Alg Ti; injection of residuals 
Alg T3: Alg 9; LEX; injection of residuals. 

Institute for Computational Research 
Colorado State University 
Fort Collins, Colorado 80523 



HIGHER ORDER MULTI-GRID METHODS 115 

1. W. AUZINGER & H. J. STETTER, "Defect corrections and multigrid iterations." Preliminary report. 
2. J. H. BRAMBLE & B. E. HUBBARD, "Approximation of derivatives by finite difference methods in 

elliptic boundary value problems," Contrib. Differential Equations, v. 3, 1963, pp. 399-410. 
3. A. BRANDT, " Multi-level adaptive solutions to boundary value problems,"Math. Comp., v. 31, 1977, 

pp. 333-390. 
4. A. BRANDT, "Numerical stability and fast solutions to boundary value problems," in Boundary and 

Interior Layers-Computational and Asymptotic Methods (J. J. H. Miller, Ed.), Boole Press, Dublin, 1980. 
5. A. BRANDT & N. DINAR, " Multi-grid solutions to elliptic flow problems," in Numerical Methods for 

Partial Differential Equations (V. S. Parter, Ed.), Academic Press, New York, 1979. 
6. L. COLLATZ, Numerical Treatment of Differential Equations, 3rd ed., Springer-Verlag, Berlin, 1960. 
7. H. FORSTER, K. STUBEN & V. TROTTENBERG, "Non-standard multi-grid techniques using checkered 

relaxation and intermediate grid," in Elliptic Problem Solvers (M. Schultz, Ed.), Academic Press, New 
York, 1980. 

8. W. HACKBUSCH, "Bemerkungen zur iterierten Defektkorrektur und zu ihrer Kombination mit 
Mehrgitterverfahren," Rev. Roumaine Math. Pures Appl., v. 26, 1981, pp. 1319-1329. 

9. W. HACKBUSCH, "Survey of convergence proofs for multi-grid iterations," in Special Topics of 
Applied Mathematics (J. Frehse, et. al., Eds.), North-Holland, Amsterdam, 1980. 

10. S. SCHAFFER, High Order Multi-Grid Methods to Solve the Poisson Equation, Proc. NASA-Ames Res. 
Center Symp. on Multigrid Methods, Moffett Field, Oct., 1981. 

11. S. SCHAFFER, Higher Order Multi-Grid Methods, Ph.D. Thesis, Colorado State University, May, 
1982. 

12. H. J. STETTER, "The defect correction principle and discretization methods," Numer. Math., v. 29, 
1978, pp. 425-443. 

13. K. STUJBEN, Local Mode Analysis for the Solution of Elliptic Problems by Multigrid Methods, Internal 
Report, GMD-IMA, St. Augustin, Germany, 1982. 


